推荐主题
查看: 1389|回复: 0

使用不同厚度的Al2O3钝化层调制原子层沉积的Hf0.5Al0.5O/Si栅叠层的界面和电学性质

[复制链接] qrcode

41

主题

42

帖子

223

积分

超级版主

Rank: 8Rank: 8

积分
223
发表于 2018-12-20 09:13:25 | 显示全部楼层 |阅读模式
Modulation of the interfacial and electrical properties of atomic-layer-deposited Hf0.5Al0.5O/Si gate stacks using Al2O3 passivation layer with various thickness
使用不同厚度的Al2O3钝化层调制原子层沉积的Hf0.5Al0.5O/Si栅叠层的界面和电学性质
Journal of Vacuum Science & Technology A 37, 011101 (2019);

https://doi.org/10.1116/1.5050642

Juan Gao1,2,3,a), Gang He1,4,a), Die Wang1, and Shuang Liang1
Hide Affiliations
1School of Physics and Materials Science, Radiation Detection Materials & Devices Lab, Anhui University, Hefei 230039,People’s Republic of China
2School of Mechanics and Optoelectric Physics, Anhui University of Science and Technology, Huainan 232001, China
3Co-operative Innovation Research Center for Weak Signal-Detecting Materials and Devices Integration, Anhui University, Hefei 230601, People’s Republic of China
4Institute of Physical Science and Information Technology, Anhui University, Hefei 230601, People’s Republic of China
a)Electronic addresses: ganghe01@issp.ac.cn and gaojuanphys@126.com

ABSTRACT
摘要

The interfacial properties and electrical characteristics of atomic layer deposited Hf0.5Al0.5O/Si with different Al2O3 barrier layer thicknesses have been investigated. X-ray photoelectron spectroscopy measurements have shown that a 1-nm-thick Al2O3 buffer layer can effectively suppress the silicate formation and improve interfacial properties. Accordingly, the sample with a 1-nm-thick Al2O3 layer exhibits improved electrical properties, including the lowest density of oxide charge of 3.16 × 1010 cm−2, an interface charge density of 0.82 × 1011 cm−2 eV−1, and an oxide trapped charge density of 0.79 × 1011 cm−2. The reduced leakage current at an applied substrate voltage of 1 V is 3.28 × 10−6 A/cm2. Furthermore, the carrier transportation mechanism of Al/Hf0.5Al0.5O/Al2O3/Si/Al MOS device has been researched systematically. Through the analysis, it could be found that for all samples, thermionic emission and Poole–Frenkel emission are dominant mechanisms of carrier transport under a low electric field region, as well as Fowler–Nordheim tunneling is the main carrier transport mechanism at a high electric field region.

Al2O3扩散层的厚度:0 nm,1nm和3nm

本文研究了具有不同Al2O3阻挡层厚度的原子层沉积Hf0.5Al0.5O/Si的界面性质和电学特性。X-射线光电子能谱测量表明,1nm厚的Al2O3缓冲层可以有效地抑制硅酸盐的形成并改善界面性质。因此,具有1nm厚的Al2O3层的样品表现出改善的电性能,包括最低的氧化物电荷密度3.16 × 1010 cm−2,界面电荷密度0.82 × 1011 cm−2 eV−1,以及氧化物捕获电荷密度0.79 × 1011 cm−2。施加的基板电压为1V时的泄漏电流减小到3.28 × 10−6 A/cm2。此外,本文系统地研究了Al/Hf0.5Al0.5O/Al2O3/Si/Al MOS器件的载流子传输机理。通过分析可以发现,对于所有样品,在低电场区域热电子发射和Poole–Frenkel发射是载流子传输的主要机制,而在高电场区域Fowler–Nordheim隧道效应是载流子传输的主要机制。

本帖子中包含更多资源

您需要 登录 才可以下载或查看,没有帐号?立即注册

x
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

快速回复 返回顶部 返回列表