推荐主题
查看: 242|回复: 0

相变存储器技术

[复制链接] qrcode

8

主题

8

帖子

48

积分

超级版主

Rank: 8Rank: 8

积分
48
发表于 2018-4-18 13:49:06 | 显示全部楼层 |阅读模式
Phase change memory technology
相变存储器技术

Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena 28, 223 (2010);

https://doi.org/10.1116/1.3301579

Geoffrey W. Burra)
  IBM Almaden Research Center, 650 Harry Road, San Jose, California 95120Matthew J. Breitwisch and Michele Franceschini
  IBM T.J. Watson Research Center, Yorktown Heights, New York 10598Davide Garetto, Kailash Gopalakrishnan, Bryan Jackson, and Bülent Kurdi
  IBM Almaden Research Center, 650 Harry Road, San Jose, California 95120Chung Lam and Luis A. Lastras
  IBM T.J. Watson Research Center, Yorktown Heights, New York 10598Alvaro Padilla and Bipin Rajendran
  IBM Almaden Research Center, 650 Harry Road, San Jose, California 95120Simone Raoux
  IBM T.J. Watson Research Center, Yorktown Heights, New York 10598Rohit S. Shenoy
  IBM Almaden Research Center, 650 Harry Road, San Jose, California 95120

ABSTRACT
摘要

The authors survey the current state of phase change memory (PCM), a nonvolatile solid-state memory technology built around the large electrical contrast between the highly resistive amorphous and highly conductive crystalline states in so-called phase change materials. PCM technology has made rapid progress in a short time, having passed older technologies in terms of both sophisticated demonstrations of scaling to small device dimensions, as well as integrated large-array demonstrators with impressive retention, endurance, performance, and yield characteristics. They introduce the physics behind PCM technology, assess how its characteristics match up with various potential applications across the memory-storage hierarchy, and discuss its strengths including scalability and rapid switching speed. Challenges for the technology are addressed, including the design of PCM cells for low reset current, the need to control device-to-device variability, and undesirable changes in the phase change material that can be induced by the fabrication procedure. They then turn to issues related to operation of PCM devices, including retention, device-to-device thermal cross-talk, endurance, and bias-polarity effects. Several factors that can be expected to enhance PCM in the future are addressed, including multilevel cell technology for PCM (which offers higher density through the use of intermediate resistance states), the role of coding, and possible routes to an ultrahigh-density PCM technology.

        作者调研了相变存储器(PCM)的当前状态,这是一种非易失性固态存储器技术,它是利用了所谓的相变材料中高电阻非晶态和高导电晶态之间的大的电学性质的对比度而开发的。PCM技术跨越了老的技术,在短时间内取得了快速的进步,在小型设备尺寸扩展的复杂演示以及集成大型阵列演示两方面都显示了令人印象深刻的保持性、耐用性、性能和屈服特性。他们介绍了PCM技术背后的物理原理,评估其特性如何与记忆存储层次结构中的各种潜在应用相匹配,并讨论了其优势,包括可扩展性和快速切换速度。讨论了该技术面临的挑战,包括用于低复位电流的PCM单元的设计,控制器件到器件的可变性的需求,以及可能由制造过程引起的相变材料的未料的变化。然后,他们转向涉及PCM设备操作的问题的研究,包括保持性、器件到器件的热串扰、耐久性和偏置-极性效应。讨论了未来可以提高PCM性能的几个因素,包括用于PCM的多级单元技术(通过使用中间电阻状态提供更高的密度)、编码的作用,以及超高密度PCM技术的可能途径。

回复

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

快速回复 返回顶部 返回列表