推荐主题
查看: 308|回复: 0

硅中二维锑超晶格的低温同质外延生长

[复制链接] qrcode

35

主题

35

帖子

185

积分

超级版主

Rank: 8Rank: 8

积分
185
发表于 2018-12-5 10:52:46 | 显示全部楼层 |阅读模式
Low-temperature homoepitaxial growth of two-dimensional antimony superlattices in silicon
硅中二维锑超晶格的低温同质外延生长
Journal of Vacuum Science & Technology A 36, 061513 (2018);

https://doi.org/10.1116/1.5040837

April D. Jewella), Michael E. Hoenk, Alexander G. Carver, and Shouleh Nikzad
Hide Affiliations
Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, California 91109
a)Electronic mail: april.d.jewell@jpl.nasa.gov

ABSTRACT
摘要

The authors present a low-temperature process for the homoepitaxial growth of antimony superlattices in silicon. The all low-temperature superlattice doping process is compatible as a postfabrication step for device passivation. The authors have used low-temperature molecular beam epitaxy to embed atomically thin (2D), highly concentrated layers of dopant atoms within nanometers of the surface. This process allows for dopant densities on the order of 1013–1014 cm−2 (1020–1021 cm−3); higher than can be achieved with three-dimensional doping techniques. This effort builds on prior work with n-type delta doping; the authors have optimized the growth processes to achieve delta layers with sharp dopant profiles. By transitioning from a standard effusion cell to a valved cracker cell for antimony evaporation, the authors have achieved carrier densities approaching 1021 cm−3 with peak distribution at ~10 Å FWHM for single delta layers. Even at the highest dopant concentrations studied, no deterioration in carrier mobility is observed, suggesting the upper limit for dopant incorporation and activation has not yet been met. The authors will discuss the details related to growth optimization and show results from in situ monitoring by electron diffraction. They will also report on elemental and electrical characterization of the films.

        本文作者提出了一种低温工艺,用于硅中锑超晶格的同质外延生长。作为器件钝化的一个后制造步骤,所有的低温超晶格掺杂工艺都是兼容的。作者使用低温分子束外延法在表面纳米范围内嵌入原子级尺度的(2D),高浓度的掺杂剂原子层。该方法允许的掺杂剂密度为1013–1014 cm−2 (1020–1021 cm−3); 高于三维掺杂技术可以达到的掺杂密度。这项工作建立在先前的n-型δ掺杂工作的基础上; 作者优化了生长过程,以实现具有尖锐掺杂剂分布的δ层。在锑蒸发过程中,通过从标准的泻流室过渡到带阀门的裂解室,对于在~10 Å半高宽处(FWHM)的单个δ层,作者已经达到了接近1021 cm−3的载流子密度。即使在所研究的最高掺杂剂浓度下,也未观察到载流子迁移率的恶化,这表明尚未达到掺杂剂掺入和活化的上限。作者将讨论与生长优化相关的细节,并通过电子衍射显示原位监测结果。他们还将报告薄膜的元素和电学特性。


本帖子中包含更多资源

您需要 登录 才可以下载或查看,没有帐号?立即注册

x
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

快速回复 返回顶部 返回列表